AVE – ITRANSPORTE https://www.revistaitransporte.es INGENIERÍA Y CONSULTORÍA DEL TRANSPORTE Sun, 04 Apr 2021 23:26:34 +0000 es hourly 1 https://wordpress.org/?v=5.9.4 En servicio el nuevo tramo de AVE a Elche y Orihuela https://www.revistaitransporte.es/en-servicio-el-nuevo-tramo-de-ave-a-elche-y-orihuela/ Sun, 04 Apr 2021 22:21:31 +0000 https://www.revistaitransporte.es/?p=5186

El presidente del Gobierno, Pedro Sánchez, acompañado por el ministro de Transportes, Movilidad y Agenda Urbana, José Luis Ábalos, y el presidente de la Comunidad Autónoma de Valencia, Ximo Puig, (en la imagen los tres, en la estación de Elche junto con el alcalde Carlos González, a la derecha) inauguró el 1 de febrero el nuevo tramo de alta velocidad de 54 kilómetros Monforte del Cid-Beniel, que incorpora las nuevas estaciones de Elche Alta Velocidad y Orihuela Miguel Hernández. El ministro destacó la reducción de una hora del viaje entre Elche y Madrid, y las dos nuevas conexiones diarias entre Murcia y la capital.

Ineco, que ha participado en toda la línea de alta velocidad a Levante (ver IT36 e IT47), en este tramo ha prestado a Adif servicios de redacción de proyectos de instalaciones de seguridad, así como direcciones de obra y asistencia técnica de plataforma y estaciones, señalización y telecomunicaciones, montaje de vía, catenaria, pruebas de circulación, y supervisión y pruebas del sistema ERTMS Nivel 2. En este ámbito, cabe destacar el hito tecnológico conseguido con la puesta en servicio, por primera vez en España, del handover entre distintas tecnologías en el triángulo Murcia-bifurcación Vinalopó-Monforte del Cid, un contrato ejecutado por CAF Signalling. Esto permite que dos RBC de distintos fabricantes, Hitachi y Alstom, se pasen el control de los trenes entre sus zonas de influencia.

]]>
Construyendo el AVE a Galicia https://www.revistaitransporte.es/construyendo-el-ave-a-galicia/ Tue, 26 Nov 2019 15:00:14 +0000 https://www.revistaitransporte.es/?p=4182

La llegada de la alta velocidad ferroviaria a esta región del noroeste de España tuvo su primer episodio histórico a finales de 2011, con la entrada en servicio del tramo de 150 kilómetros entre Ourense, Santiago y A Coruña. Tras la puesta en servicio de la línea entre Olmedo y Zamora en 2015, queda por cerrar la conexión ferroviaria de Galicia con el centro de la península ibérica con la finalización de tres tramos que suman cerca de 230 kilómetros: Zamora-Pedralba de la Pradería, Pedralba de la Pradería-Taboadela y Taboadela-Ourense.

El dificultoso recorrido entre Pedralba y Ourense

Construido en su mayor parte con dos vías independientes, el tramo entre Pedralba y Ourense, de 101 kilómetros, atraviesa las montañas de las distintas sierras que forman el macizo central ourensano, un recorrido que el AVE podrá realizar gracias a la construcción de 32 viaductos y 31 túneles, muchos de ellos bitubo, es decir, con un tubo para cada vía. Más del 60% de este recorrido, subterráneo o en viaducto, ha requerido de una obra singular: en total, el tramo suma casi 11 kilómetros de viaductos, de los que el más largo es el viaducto de Requejo (1,72 km), y 126 kilómetros de túneles, (62,45 km en la vía derecha más 55,87 km en la vía izquierda y 7,84 km de vía doble), siendo el más largo el túnel de O Corno (8,6 km).

LÍNEA DE ALTA VELOCIDAD MADRID-GALICIA. La LAV Madrid-Galicia está cofinanciada por el Fondo Europeo de Desarrollo Regional (FEDER) y el Fondo de Cohesión-FEDER 2007-2013 y del P.O. Plurirregional de España 2014-2020.

Las obras que protagonizan este reportaje pertenecen a este complejo recorrido entre Pedralba y Ourense en el que Adif Alta Velocidad está llevando la construcción con los más altos niveles de tecnología ferroviaria, con doble vía en ancho estándar (1.435 mm) en todo su recorrido, y diseñado para velocidades máximas de hasta 350 km/h, con electrificación 2×25 kV 50 Hz en corriente alterna, sistemas de control de tráfico ERTMS N2 y Asfa, y sistema de comunicaciones móviles GSM-R.

5 de las obras más singulares

YA SEA POR EL MÉTODO CONSTRUCTIVO, POR SUS DIMENSIONES O POR LAS CARACTERÍSTICAS DEL  ENTORNO, EL TRAMO CONCENTRA VARIAS INFRAESTRUCTURAS QUE DESTACAN POR SU COMPLEJIDAD.

1. Los cajones hincados de Requejo

Dos cajones de 80 y 100 metros, empujados bajo las vías del ferrocarril convencional, completan los túneles de Requejo.

En primer plano, el apeo de la vía. Detrás, en posición transversal, uno de los dos cajones ya ejecutados. Al fondo, boca del túnel de Requejo.

A pocos kilómetros de Pedralba, las obras del AVE avanzan atravesando las montañas de la comarca de Sanabria con varias actuaciones notorias, entre ellas, la construcción de los cajones hincados del túnel de Requejo, unas estructuras construidas in situ en la boca oeste del lado Galicia y empujadas bajo las vías del ferrocarril sin interrumpir el servicio ferroviario, lo que ha permitido a Adif mantener la circulación en la línea convencional Zamora-A Coruña, que se cruza en este punto con la nueva línea de alta velocidad.

Este cruce de la línea de alta velocidad con la vía convencional se ha resuelto mediante la ejecución de dos cajones hincados de hormigón armado de dimensiones interiores de 8,5 metros de alto y 8,5 metros de ancho, con unas longitudes de 79,5 metros para el cajón de vía derecha y de 100,5 metros para el cajón de vía izquierda.

Los cajones configuran, en su posición final, los falsos túneles de salida de los túneles de Requejo. El procedimiento de ejecución ha incluido el apeo de la vía convencional y la construcción de las obras de fábrica sobre una plataforma de deslizamiento en las proximidades a su emplazamiento definitivo, para su posterior traslación mediante empuje oleodinámico en sentido transversal a la vía hasta su posición final.

El apeo consiste en una estructura metálica que permite el desplazamiento del cajón sin que se vea afectada la vía, garantizando su estabilidad. Este apeo obligó a que la circulación ferroviaria discurriera durante las obras con una limitación de velocidad de 30 km/h cuando la velocidad normal de trazado por esta zona supera los 100 km/h. La limitación es necesaria como medida de seguridad ya que la vía en esta situación sufre movimientos en nivelación y alineación que no son compatibles con velocidades mayores. Dadas las longitudes de hinca, los cajones se dividieron longitudinalmente en dos tramos que se iban empujando de manera sucesiva, cada uno con la correspondiente batería de 15 cilindros hidráulicos con una fuerza de 300 toneladas por cilindro. A la vez que se realizaban los sucesivos empujes, de una longitud de 50 centímetros cada uno, se procedía al vaciado de tierras con medios mecánicos, de tal modo que no se pusiera en peligro la estabilidad de las vías, hasta conseguir la posición final de la estructura.

2. Los túneles de Padornelo

Un túnel de alta velocidad construido a apenas 20 metros del túnel más largo de toda la línea convencional española.

Ineco lleva a cabo para Adif Alta Velocidad la dirección de obra de este túnel de 6.406 metros y una sección libre de 52 metros cuadrados, que discurre en paralelo al túnel de la línea de ancho convencional Zamora-A Coruña, y está situado entre los términos municipales de Requejo y Lubián (Zamora), bajo el puerto de montaña de Padornelo.

El de Padornelo pertenece al tramo Padornelo-Lubián, consistente en una plataforma de vía única para vía derecha de ancho UIC, con una longitud total de 7,6 kilómetros. La vía izquierda de alta velocidad se ejecutará en una fase posterior en un nuevo proyecto que adaptará el histórico túnel de Padornelo en la línea Zamora-A Coruña, de 5,97 kilómetros de longitud, para el tráfico mixto de la vía izquierda de la línea de alta velocidad y de las mercancías de la línea convencional.

La construcción se ha llevado a cabo con excavación convencional, aplicando sostenimientos basados en hormigón proyectado, bulones y cerchas. La excavación se ha realizado mediante voladura en las zonas de terreno más resistente, y mediante medios mecánicos (retroexcavadoras, martillo demoledor hidráulico, etc.) en los terrenos más blandos y de peor calidad geotécnica.

La ejecución ha estado condicionada por la proximidad del túnel de la línea convencional Zamora-A Coruña. Durante las obras se ha mantenido el tráfico de esta, por lo que se han establecido unos protocolos de control de las deformaciones en ambos túneles, y se ha hecho necesaria la ejecución de refuerzos en algunos tramos del antiguo con mallazo y hormigón proyectado. También se han construido 15 galerías de conexión entre túneles y un andén de evacuación a lo largo del túnel actual, que conforman la vía de evacuación necesaria para la puesta en servicio de la línea de alta velocidad. Para llevar a cabo estas obras se ha renovado toda la vía con carril UIC 60 E1, traviesas de hormigón PR-01 y balasto tipo 1.

Las obras han ido acompañadas de una serie de actuaciones medioambientales y de integración paisajística específicas debido a a la proximidad de dos espacios protegidos como LIC (Lugar de Importancia Comunitaria):  las riberas de los ríos Tera y Tuela y sus afluentes. En este sentido, se han acordado con la administración autonómica diferentes medidas para evitar afecciones a la flora y fauna protegidas. Un ejemplo ha consistido en el tratamiento de las aguas procedentes del túnel, que son sometidas a diferentes procesos antes de su vertido al cauce, con el fin de que los parámetros físico-químicos sean conformes a la legislación aplicable. Además, en los ríos pertenecientes a los LIC mencionados, se está llevan a cabo un seguimiento de las características físico-químicas de las aguas de los ríos, así como un seguimiento de evaluación de las poblaciones de desmán ibérico, (galemys pyrenaicus), trucha común (salmo trutta), náyade (margaritifera margaritifera) y macroinvertebrados acuáticos, desde el inicio de las obras.

3. Los túneles del Espiño

Dos grandes túneles de alta velocidad construidos con ocho frentes de excavación simultáneos.

Vista del emboquille Oeste. Los túneles se han diseñado para integrarlos lo mejor posible en las laderas.

La singularidad de los túneles del Espiño es que se ha excavado cada uno desde cuatro frentes de excavación de forma simultánea: además de los dos frentes extremos, se ejecutaron dos frentes de ataque intermedios. Para lograrlo, se construyó una galería de ataque intermedio que finalizaba en una caverna de grandes dimensiones, desde la que se habilitaban cuatro frentes adicionales para excavar en sentido Madrid y Ourense. La ampliación del número de frentes permitió reducir los plazos de excavación del túnel.

El túnel, de tipología bitubo, discurre por los términos municipales de A Gudiña y Vilariño de Conso, en la provincia de Ourense. Con cerca de 8 kilómetros en cada vía y conexiones entre túneles cada 400 metros (20 galerías de emergencia), representa uno de los grandes túneles del tramo.

Ambos túneles se excavaron mediante el denominado ‘nuevo método austriaco’, a sección partida desde el emboquille Este, desde el emboquille Oeste y desde las galerías de ataque intermedio hacia ambos emboquilles. En la vía derecha cuenta con una longitud exacta de 7.924 metros incluidos los túneles artificiales de 30 y 40 metros en cada una de las bocas, diseñados con el fin de mejorar la integración de la infraestructura en las laderas. El resto (7.854 m) se han excavado en mina, es decir, bajo terreno natural. En la vía izquierda tiene una longitud en mina de 7.838 m, excavados bajo terreno, a los que se han añadido 30 y 36 metros respectivamente en cada una de las bocas como túneles artificiales o falso túnel, con lo que el túnel del Espiño vía izquierda se extiende a lo largo de 7.904 m. Las estructuras en falso túnel también se han diseñado con el fin de mejorar su integración visual en las laderas.

La presencia de sulfuros metálicos y materia carbonosa en algunas rocas pizarrosas hizo necesario un tratamiento en los vertederos para una parte de los materiales excavados, mediante el uso de tecnosoles. Esta técnica permitió, por un lado, controlar la oxidación de esos sulfuros, que son susceptibles de generar aguas ácidas, creando un entorno reductor y además reduciendo la cinética de oxidación. Además, los tecnosoles actúan como tampón, adsorbiendo metales pesados que pudieran estar presentes en el agua de escorrentía en forma de lixiviados, y tienen carácter eutrofizante, lo que favorece la integración ambiental final.

4. Los túneles de Bolaños

Son los dos únicos túneles de la línea Madrid-Galicia ejecutados con tuneladora.

Montaje de la tuneladora de 230 metros de longitud y 2.900 toneladas, en mayo de 2015.

Los túneles de Bolaños son los únicos de toda la línea construidos mediante tuneladora. De tipología bitubo, pertenecen al tramo Vilariño-Campobecerros, tramo de 6,96 kilómetros para la vía derecha y de 7,91 kilómetros para la vía izquierda. El trazado discurre por los términos municipales de Vilariño de Conso, A Gudiña y Castrelo do Val, en la provincia de Ourense.

Los dos se ejecutaron con tuneladora a excepción de los primeros 55,91 metros de la boca Oeste y los primeros 15 metros de la boca Este en la vía derecha y los primeros 76,13 metros de la boca Oeste en vía izquierda, que se ejecutaron por métodos convencionales para salvar una falla.

El dimensionamiento de la sección de los túneles viene limitado por el cumplimiento de los criterios de salud y confort establecidos por la UIC, que fijan unos límites que garantizan el transporte de viajeros de calidad en la alta velocidad. Siguiendo dichos criterios, la sección libre de los túneles ha resultado ser de 52 m2. La sección de excavación de la tuneladora tiene 9,80 metros de diámetro, con un revestimiento de dovelas prefabricadas de hormigón armado de 37centímetros de espesor con un diámetro interior de 8,76 m. El hormigón de las dovelas contiene fibras de polipropileno como medida de protección contra el fuego. El hueco entre la excavación de la tuneladora y el revestimiento de dovelas se ha rellenado con mortero bicomponente, una mezcla de mortero convencional con bentonita hidratada y silicato.

La impermeabilización del revestimiento prefabricado se ha logrado mediante la fabricación de las dovelas con un hormigón de baja permeabilidad; la colocación en las juntas de las dovelas de una doble junta de impermeabilización y la inyección del espacio que queda entre la superficie excavada y el anillo de dovelas construido mediante mortero bicomponente. La inyección del trasdós de las dovelas cumple la misión de ser la impermeabilización primaria, ya que, en la práctica, es la primera barrera que encuentra el agua freática en su recorrido hacia el interior del túnel, siendo la secundaria la que proporcionan las juntas.

Los dos tubos se encuentran conectados por 18 galerías, una de las cuales es específica de instalaciones. La sección de las galerías tiene una anchura libre de 4,70 m, y dispone de un revestimiento de 25 centímetros de hormigón en masa, con adición de fibras de polipropileno como medida de protección contra el fuego.

Durante la excavación de los túneles se ha generado gran cantidad de aguas derivadas de los procesos constructivos y que ha sido necesario tratar en una planta depuradora de grandes dimensiones para cumplir con los parámetros exigidos por los organismos competentes. Mediante decantación se eliminan los sólidos en suspensión presentes las aguas, favorecida por el empleo de coagulantes y floculantes. Mediante el empleo de CO2 (en caso de aguas de proceso básicas) o de sosa cáustica (en caso de aguas de proceso ácidas) se consigue regular el pH.

5. El viaducto de Teixeiras

Un arco central de más de 100 metros de altura sobre el arroyo Teixeiras.

Las pilas centrales superan los 90 metros de altura, con dos semiarcos que permiten una separación entre ellas de 132 metros.

El viaducto de Teixeiras, del que Ineco lleva la dirección de obra y la dirección ambiental, es, sin duda, la estructura más espectacular de toda la LAV Madrid-Galicia.

El tablero de los viaductos de Teixeiras se ha ejecutado mediante autocimbra, y tiene una longitud de 508 metros distribuidos en ocho vanos (56 m + 4×66 m+56 m). Su singularidad radica en el procedimiento constructivo elegido para lograr salvar el arroyo Teixeiras con el máximo respeto al entorno. Para ello, en las pilas centrales (que superan los 90 metros de altura) se erigieron dos semiarcos que comparten cimentación, que tras ser abatidos se unen materializando una dovela de cierre que es el punto fijo del tablero, y que permite generar una separación entre pilas de 132 metros, equivalente a dos vanos, lo que, además de minimizar la afección al entorno, dota a la estructura de gran transparencia y belleza. El arroyo Teixeiras, afluente del río Támega, posee una vegetación de ribera con protección, y en las laderas del entorno se conserva un bosque compuesto por especies autóctonas, con ejemplares de castaños y robles de gran porte.

La construcción de una gran estructura, como es el caso del viaducto del Teixeiras, requiere de unas superficies auxiliares de grandes dimensiones para albergar las instalaciones que sirven de apoyo a la construcción: desde grandes grúas a casetas de obra; desde acopios a zonas de aparcamiento de vehículos. En esta obra se ha estudiado minuciosamente la forma de reducir al mínimo esa superficie de afección. Se ha analizado con detalle la apertura de caminos con pendientes exigentes para reducir su desarrollo, zonas de instalaciones auxiliares en los recodos de curvas o entre cimentaciones, plataformas de trabajo adosadas a los trabajos con ocupaciones estrictas, etc. Todo ello se ha localizado en ambas laderas que, además de una elevadísima pendiente, presentan suelos compuestos de materiales altamente disgregables y por lo tanto, con alto potencial de generar arrastres de tierras que irían a parar al curso fluvial.

Con objeto de evitar o paliar los efectos que estos arrastres y escorrentías de tierras que las lluvias pudieran ocasionar sobre la calidad de las aguas del río Teixeiras, se ha ejecutado un ingenioso sistema antiarrastre que básicamente consiste en un entramado de canalizaciones (cunetas hormigonadas, tuberías, areneros, zonas de remanso para la decantación, balsas intermedias…) desplegado a lo largo de los caminos de acceso a las cimentaciones, que confluyen en unas balsas de bombeo situadas muy cerca del curso fluvial. Para reducir los movimientos de tierras y facilitar la integración posterior, se han empleado contenedores metálicos como balsas de bombeo, lo hace muy fácil su retirada tras la finalización de las obras.

En caso de producirse fuertes lluvias, las escorrentías cargadas de sedimentos son reconducidas –elevándolas a través de unas potentes bombas– hacia un sistema de depuración localizado a la altura del estribo 2 de la estructura que amplifica la capacidad de respuesta en el caso de un aguacero. En ese sistema de depuración puede emplearse además coagulantes y floculantes para acelerar la decantación, en caso de ser necesaria.

Por los directores de obra de Ineco Arturo Pastor, Iago Rodríguez-Lorasque y Noelia Cobo, el ingeniero técnico Jesús Pena, y los directores ambientales de obra Iñaki G. Seoane, Enrique M. Agüera y Luis Álvarez-Pardiñas con la colaboración de Raúl Correas, subdirector de Construcción V de Adif Alta Velocidad.

Pruebas de carga: listos para la acción

Ineco ha llevado a cabo para Adif la prueba de carga de 25 estructuras y la inspección de 70 puentes del tramo Olmedo-Pedralba de la línea de alta velocidad Madrid-Galicia, previas a la puesta en explotación de la línea.

Por Pablo Sánchez Gareta, ingeniero de caminos

Equipo de Ineco, de izqda. a dcha.: Jorge Benito, Amadeo Cano, Pablo Martín-Romo, Javier Ortiz, Pablo S. Gareta y Carlos Sánchez.

Durante los meses de marzo y abril de 2019, un equipo de siete especialistas de Ineco ha llevado a cabo para Adif Alta Velocidad una tarea fundamental previa a la puesta en explotación del nuevo tramo Olmedo-Pedralba de la Pradería: las pruebas de carga e inspecciones de las puentes y viaductos sobre las que discurre el complejo trazado de la LAV Madrid-Galicia; todas ellas con resultados satisfactorios.

En total, se han realizado pruebas de carga sobre 25 estructuras, además de las inspecciones principales de 70 puentes (14 viaductos, 2 pérgolas y 54 pasos inferiores). En este último caso, y dado que se trata de puentes de nueva construcción, los datos recogidos en las inspecciones sirven como situación de referencia (estado cero), para el posterior análisis y seguimiento de la evolución.

Durante las pruebas, que son preceptivas para todos los puentes de nueva construcción en los que alguno de sus vanos tenga una luz igual o superior a 10 metros, se reproducen en condiciones controladas las acciones propias de la utilización real de la obra.

En otras palabras, se comprueba que el puente es seguro, que está bien construido y que será capaz de soportar a lo largo del tiempo las cargas de los trenes que circularán sobre él. Para ello se realizan ensayos estáticos y dinámicos –a diferentes velocidades– con trenes cargados. Los datos recogidos por los sensores instalados en la estructura se analizan y se compara la respuesta real y la esperada. Los resultados se remiten a la Agencia de Seguridad Ferroviaria, responsable de autorizar la entrada en servicio del tramo.

Entre las estructuras más representativas que se han probado destaca el viaducto de Ricobayo, que salva el embalse del mismo nombre, de 368 metros de longitud y cuatro vanos con luces de entre 50 y 155 metros. Para la prueba se utilizaron 2 locomotoras y 20 vagones tolva cargados de balasto, con un peso total de 1.863 toneladas. Sobre el espectacular viaducto sobre el río Tera, de 645 metros de longitud compuesto por nueve vanos con luces de entre 60 y 75 metros, circularon,  a velocidades de entre 10 y 80 km/h, dos trenes con ocho vagones tolva cada uno, con un peso total de 1.536 toneladas.

El ancho importa

Mientras se ultima la ejecución del tramo de alta velocidad Zamora-Ourense, se ha construido un cambiador de ancho en Pedralba de la Pradería, para que los trenes puedan circular sin detenerse sobre vías en dos anchos distintos. Ineco ha dirigido las obras, al igual que está haciendo en el cambiador de Taboadela, al otro extremo del tramo.

Por Marta González, ingeniera de caminos, y Noelia Sánchez, ingeniera civil

Ineco ha dirigido para Adif Alta Velocidad las obras del cambiador de ancho de Pedralba de la Pradería, en Zamora, una instalación ferroviaria que hace posible que los trenes entre Madrid y Galicia puedan circular sin interrupción, pasando de la vía de alta velocidad en ancho estándar (1.435 mm) a la vía convencional en ancho ibérico (1.668 mm), automáticamente. Además, en el extremo opuesto del tramo, se han iniciado las obras de otro cambiador en Taboadela, Ourense, que también dirige Ineco. Un cambiador de ancho es una instalación ferroviaria que permite a un tren dotado con un sistema de ejes o semiejes de ancho variable modificar automáticamente el ancho de rodadura mientras circula a una velocidad constante (15 km/h, aproximadamente) y sin intervención humana. En España, donde la red de alta velocidad en ancho estándar convive con la convencional, en ancho ‘ibérico’, (ver IT57 e IT22) estas instalaciones son fundamentales para hacer posible el paso de una a otra en los puntos donde ambas se encuentran. Ése es el caso del tramo Pedralba-Taboadela-Ourense.

De izquierda a derecha, las ingenieras Noelia Sánchez, jefa de unidad ACO y Marta González, directora de la obra del cambiador de anchos de Pedralba, en Zamora.

El cambiador de ancho de Pedralba es dual, tipo TCRS3, es decir, apto tanto para tecnología CAF como Talgo. Los trabajos han incluido el montaje de un desvío que conecta la línea convencional Zamora-A Coruña en el punto kilométrico 112/405 con el cambiador. Las instalaciones consisten en una nave de estructura metálica con un foso principal, donde se encuentra la plataforma de cambio de ancho propiamente dicha, equipada con un sistema de videograbación. A ambos lados se sitúan dos fosos de observación que permiten inspeccionar el sistema de rodadura, que además cuentan con un sistema automático de descongelación de los rodales para trenes Talgo. Se trata de una solución temporal hasta que se ponga en servicio el siguiente tramo de alta velocidad; tras lo que desmontará y se trasladará la plataforma y los equipos a otro cambiador.

BREVE HISTORIA DE UNA TECNOLOGÍA PIONERA

  • Los primeros cambiadores de ancho se instalaron en España en 1968 en Irún y Portbou, para permitir que los trenes Talgo pudieran circular hacia París y Zurich.
  • Los cambiadores de ancho se extendieron al mismo tiempo que la red de alta velocidad;  los de primera generación eran diferentes para cada una de las dos tecnologías de rodadura variable existentes en España (RD de Talgo y Brava de CAF). Posteriormente, se desarrolló un sistema apto para ambas, el dual. Adif instaló el primero de tercera generación (TCRS3) en 2009.
  • Durante más de veinte años, Ineco ha participado en el diseño de la mayoría de las diferentes generaciones de cambiadores. En la actualidad se encarga también del mantenimiento y explotación de más de una veintena de cambiadores de ancho automático por toda España.

]]>
Inaugurado el AVE a Granada https://www.revistaitransporte.es/inaugurado-el-ave-a-granada/ Thu, 29 Aug 2019 15:02:53 +0000 https://www.revistaitransporte.es/?p=4014

El 25 de junio se estrenó oficialmente el nuevo AVE entre Madrid y Granada, con un viaje inaugural al que acudieron el presidente del Gobierno en funciones, Pedro Sánchez, (en el centro de la imagen), el ministro de Fomento en funciones, José Luis Ábalos, la presidenta de Adif, Isabel Pardo de Vera (dcha.), el presidente de Renfe, Isaías Taboas, y el secretario de Estado de Infraestructuras, Transporte y Vivienda, Pedro Saura, (izqda.), entre otros invitados y autoridades.

La operación comercial se inició al día siguiente, el 26 de junio, con tres servicios por sentido entre Granada y Madrid –separadas por una distancia de 568 km– con un tiempo de viaje máximo de 3 horas y 19 minutos. Entre Granada y Barcelona, se ha establecido un servicio diario con un tiempo de viaje de 6 horas y 25 minutos. Todos los servicios tendrán parada en Córdoba.

La nueva línea de alta velocidad cuenta con tres estaciones en Antequera, Loja y Granada, y está equipada con ERTMS nivel 2 y comunicaciones móviles GSM-R.  (Ver reportaje en página 10).

De izqda. a dcha.: Las presidentas de Adif, Isabel Pardo, y de Ineco, Carmen Librero junto con Pedro Ruiz, Moisés Gilaberte y Laura López, de Ineco.

]]>
Pilotos de pruebas https://www.revistaitransporte.es/pilotos-de-pruebas/ https://www.revistaitransporte.es/pilotos-de-pruebas/#respond Sun, 11 Feb 2018 13:29:57 +0000 http://www.revistaitransporte.es/?p=3265

Entre sus cometidos, el jefe de Circulación, al igual que en España, tiene la responsabilidad de gestión de las distintas actividades que se desarrollan en la vía y su entorno, para garantizar así la seguridad y su buen desarrollo, ya sean actividades propias de construcción o bien de pruebas del tren y los subsistemas. No obstante, dado el carácter internacional y la complejidad y magnitud del proyecto (es prácticamente como la línea española de alta velocidad Madrid-Sevilla en longitud), el trabajo en la nueva línea entre La Meca y Medina cuenta con una estructura organizativa y operativa del proyecto que difieren de la aplicada en España.

La actividad del Traffic Control está basada en el Procedure of Traffic Control in Construction Phase for HARAMAIN HSR o PTCH como se la conoce en Arabia. Esta normativa, redactada por Ineco, se desarrolló a partir de la versión española y de ella, y su correcto uso, se deriva el excelente resultado en términos de seguridad ferroviaria que ha imperado en estos años. Esta normativa es el abecé del jefe de Circulación y de los trabajadores de las otras empresas involucradas en el proyecto, de modo que la interacción diaria entre ellos sea exitosa.

Por primera vez la tecnología de la Alta Velocidad Española (AVE) se ha introducido en Arabia Saudí, un país donde la presencia del ferrocarril es escasa o inexistente, en ciudades como Jeddah. Una gran parte de las actividades constructivas de una línea de alta velocidad se inician en las bases de trabajo, desde donde los jefes de Circulación realizan su rutina diaria. En el caso de Arabia Saudí, los equipos del personal de Ineco se han asentado en campamentos junto a estas bases de trabajos –como el de Rabigh– para estar lo más cerca posible de la obra, reducir los tiempos de viaje y minimizar riesgos de accidentes.

El jefe de Circulación tiene total capacidad de gobierno en la operación sobre las distintas actividades que se desarrollan en la vía para su seguridad y óptimo funcionamiento. Ya sea operando desde un puesto de mando auxiliar, el puesto central, o con un walkie-talkie, ofrece toda la información necesaria a los maquinistas y es responsable de la marcha de los trenes en los intervalos entre estaciones y de supervisar a efectos del control del tráfico el accionamiento por parte de las empresas instaladoras de desvíos e instalaciones telemandadas.

Los equipos de Circulación como el Haramain deben lograr una comunicación exitosa superando la diversidad de idiomas que conviven diariamente, dado el gran porcentaje de mano de obra proveniente de países –además de España– como Pakistán, Filipinas, India, Bangladesh, Sri Lanka, etc.

]]>
https://www.revistaitransporte.es/pilotos-de-pruebas/feed/ 0
Éxito en las pruebas del AVE del desierto https://www.revistaitransporte.es/exito-en-las-pruebas-del-ave-del-desierto/ https://www.revistaitransporte.es/exito-en-las-pruebas-del-ave-del-desierto/#respond Wed, 18 Oct 2017 08:21:18 +0000 http://www.revistaitransporte.es/?p=3144

El tren de alta velocidad que conectará las ciudades de La Meca y Medina en Arabia Saudí llegó a Yeda el pasado mes de julio en un viaje de pruebas. En el recorrido entre Yeda y Medina el tren alcanzó una velocidad máxima de operación de 300 km/h. El viaje de pruebas –al que acudieron diversas autoridades saudíes y del Ministerio de Fomento de España–comenzó en la ciudad de Yeda en dirección a la Ciudad Económica del Rey Abdullah (KAEC), donde se visitó la estación intermedia, ya finalizada, y el Centro de Control de la Operación (BOCC).

En su ruta hacia Medina el tren alcanzó la velocidad máxima de operación de 300 km/h. Actualmente, se está recorriendo en pruebas aproximadamente 370 kilómetros de los 449 de toda la línea ferroviaria (80%) del proyecto Haramain. El Consorcio Al Shoula está compuesto por 12 empresas españolas (Adif, Cobra, Consultrans, Copasa, Imathia, Inabensa, Indra, Ineco, OHL, Renfe, Siemens Rail Automation y Talgo) y 2 socios saudíes. El Consorcio está encargado del diseño, construcción, mantenimiento y operación del proyecto Haramain de alta velocidad.

]]>
https://www.revistaitransporte.es/exito-en-las-pruebas-del-ave-del-desierto/feed/ 0
Alta velocidad en España https://www.revistaitransporte.es/alta-velocidad-en-espana/ Fri, 10 Feb 2017 09:51:25 +0000 http://www.revistaitransporte.es/?p=2605

La inauguración del AVE Madrid-Sevilla fue, sin duda, una revolución tecnológica para nuestro mundo ferroviario, un salto adelante que colocó a España en la vanguardia mundial de la tecnología y construcción de vía y material rodante. En pocos años, la alta velocidad revitalizó al ferrocarril y modificó los modos de transporte compitiendo exitosamente con la carretera y el avión. Gracias a la confianza del Ministerio y Renfe, y posteriormente Adif, Ineco comenzó a participar en su desarrollo junto con muchas otras ingenierías y constructoras españolas.

La puesta en marcha de una línea de alta velocidad requirió de prácticamente todas las disciplinas de la ingeniería civil y la arquitectura: trazado, geología y geotecnia, diseño y cálculo estructural, obras subterráneas, hidrología y drenaje, recuperación ambiental, infraestructura y superestructura ferroviaria, diseño y remodelación de estaciones, estudios de demanda y tráfico, inspección de puentes, cauces y viaductos, pruebas de carga, auscultación e instrumentación, energía y subestaciones, señalización, centros de control, explotación, etc.

La puesta en marcha de una línea de alta velocidad requiere de prácticamente todas las disciplinas de la ingeniería civil y la arquitectura

Por ello, cuando hace 25 años se inauguró la primera línea de alta velocidad en España (una de las primeras del mundo) para muchos, el recorrido a 250 km/h entre Madrid y Sevilla –471 kilómetros en menos de tres horas– se vivió como un triunfo, una celebración casi tan importante como la gran fiesta de la Expo’92 con la que se hizo coincidir su inauguración.

En el recuerdo de estas fechas, hemos recurrido a la memoria de aquellos –jóvenes ingenieros y técnicos de Ineco– que tuvieron la oportunidad de participar en este gran proyecto, bajo la batuta de Renfe. Gracias a esos comienzos modestos y al buen hacer, rigor y talento de nuestros profesionales, las empresas del sector ferroviario español son hoy en día más competitivas y cuentan con un merecido reconocimiento en el exterior. Un ejemplo de ello es nuestra participación en proyectos de alta velocidad en Arabia Saudí, Reino Unido, Turquía o la India.

La Conferencia de la ONU Hábitat III en Quito y el papel del transporte en el futuro de las ciudades; el estudio de las grandes rutas de transporte en Europa; los trabajos de modernización de una línea ferroviaria en Turquía y las últimas innovaciones para mejorar el tráfico aéreo europeo, son también grandes temas para analizar, que esperamos resulten amenos e interesantes para nuestro lector.

]]>
25 años de la alta velocidad española https://www.revistaitransporte.es/25-anos-de-la-alta-velocidad-espanola/ https://www.revistaitransporte.es/25-anos-de-la-alta-velocidad-espanola/#respond Thu, 09 Feb 2017 10:25:51 +0000 http://www.revistaitransporte.es/?p=2487

La experiencia adquirida a partir de aquellos años ha servido de punto de partida y guía para la vertebración del país con la que, actualmente, es la segunda red de alta velocidad más extensa del mundo.  En este cuarto de siglo, desde la inauguración de esta primera línea hasta los más de 3.100 kilómetros en servicio que componen la red actual, los expertos de Ineco han adquirido una experiencia única en el diseño y construcción de líneas de alta velocidad. El nivel tecnológico alcanzado por las empresas del sector ferroviario español ha obtenido tal reconocimiento mundial, que se ha acuñado el término específico AVE (Alta Velocidad Española) para referirse a la experiencia aportada. Esto se debe a que el desarrollo de esta tecnología ferroviaria –una apuesta política de los gobiernos de los últimos 30 años– ha supuesto unos condicionantes y unos retos incomparables respecto a lo acontecido en los otros pocos países que se han embarcado en este proyecto (Japón, Francia, China, Italia, Alemania, Bélgica, el Reino Unido y, muy recientemente, EEUU) y cuya superación ha llevado a las empresas españolas al más alto nivel de especialización. Dedicamos este reportaje a la experiencia personal y los recuerdos de aquellos que en Ineco estuvieron desde el principio, trabajando estrechamente con Renfe y el Ministerio en la consecución exitosa de este gran proyecto.

25 años, 25 experiencias

España fue el cuarto país del mundo en apostar por la alta velocidad, tras Japón (Tokio-Osaka, 1964), Francia (París-Lyon, 1981) y Alemania (Hannover-Wurzburgo, 1991). Desde que en 1986, el Gobierno decidiera la construcción de una línea de AV entre Madrid y Sevilla, las constructoras e ingenierías españolas dieron lo mejor de sí para hacerla realidad. En menos de seis años se logró recorrer 471 kilómetros en dos horas y 50 minutos.

FOTO DE FAMILIA. Un grupo de ingenieros y técnicos de Ineco trabajaron en hacer realidad la alta velocidad en los años ochenta y noventa. En la imagen, gran parte de ellos en la entrada de las oficinas centrales de Ineco, en Madrid. / FOTO_ELVIRA VILA

FOTO DE FAMILIA. Un grupo de ingenieros y técnicos de Ineco trabajaron en hacer realidad la alta velocidad en los años ochenta y noventa. En la imagen, gran parte de ellos en la entrada de las oficinas centrales de Ineco, en Madrid. / FOTO_ELVIRA VILA

La inauguración, el 20 de abril de 1992 –en un tiempo de construcción récord–, tuvo como excusa la celebración de la Exposición Universal de 1992, en Sevilla, y, como reto y objeto, el desarrollo económico de Andalucía, en el sur de España. A medio plazo, el objetivo del Gobierno era mucho más ambicioso: la construcción de una nueva y moderna red ferroviaria que se integrara con la futura red de alta velocidad europea, decisión que se tomó en el Consejo de Ministros de diciembre de 1988. Fruto de ese esfuerzo de innovación, inversión y trabajo, el siglo XX español se cerró con el mayor proyecto de ingeniería del transporte, el primer paso para el cambio radical que ha llevado a la red de ferrocarril a las más altas cotas de eficiencia y calidad.

La rapidez con la que se construyó la línea –las obras se desarrollaron durante cuatro años y medio– tuvo que ver con la selección de su trazado, evitando el paso montañoso de Despeñaperros, un cuello de botella en el tráfico desde Madrid hacia el sur de la Península. En la búsqueda de alternativas, ocho años antes, en 1984, Ineco había llevado a cabo para Renfe un estudio de la rentabilidad económica y social de una línea de ferrocarril desde Madrid a Sevilla por Brazatortas-Córdoba. Dos años después, el 11 de octubre de 1986, el Gobierno decidió dar prioridad a la construcción de este nuevo acceso ferroviario a Andalucía, denominado NAFA, que acortaba la distancia total en 100 kilómetros. Ese mismo mes encomendó a Ineco el desarrollo de los proyectos básicos y constructivos del tronco principal, el tramo Getafe-Córdoba con una longitud de 320 kilómetros y una velocidad máxima de 250 km/h.

En diciembre de 1986, se formó un equipo para realizar los trabajos, creando una oficina mixta entre Renfe, el Ministerio de Obras Públicas y Transportes e Ineco, de manera que se optimizara al máximo su desarrollo. Desde entonces y hasta noviembre de 1987, un reducido grupo de ingenieros, delineantes e informáticos, comenzaron una frenética carrera para acometer los proyectos básicos y constructivos del NAFA. Desde Ineco se realizaron directamente 215 kilómetros y para los 106 kilómetros restantes, se contó con las mejores consultoras de ingeniería de España, entre las que estaban Euroestudios, Intecsa, Eptisa e Iberinsa. Todos los proyectos de infraestructura y vía fueron realizados y dirigidos por el ingeniero de caminos de Ineco, Jorge Nasarre y de Goicoechea. La francesa Alstom ganó el contrato para la fabricación del material rodante (los trenes) y el consorcio alemán AEG Siemens recibió el encargo de electrificar la totalidad de la vía férrea Madrid-Sevilla.

La inauguración, el 20 de abril de 1992, tuvo como excusa la celebración de la Exposición Universal de Sevilla, y, como reto y objeto, el desarrollo económico de Andalucía, en el sur de España

El 5 de octubre de 1987, después de efectuar la entrega de los primeros proyectos, se iniciaron las obras de la nueva variante Brazatortas-Córdoba, un tramo de 104 kilómetros denominado NAFA Sur. A finales de 1987, ya estaban entregados, licitados y contratados todos los proyectos restantes del NAFA. Un año después, se modificaron los proyectos para adoptar el ancho de vía internacional, distinto al ancho ibérico, con la intención de que los nuevos desarrollos pudieran integrarse en la red europea.

Ineco participó, por encargo de Renfe, desde abril de 1990 y hasta la finalización de las obras, en el control de calidad de la vía a recepcionar. El equipo de catorce técnicos de Ineco dirigido por el ingeniero de caminos Ulpiano Martínez Solares, estuvo asesorado por dos ingenieros alemanes enviados por la empresa alemana DE-Consult (hoy día, DB) filial de los ferrocarriles alemanes Deutsche Bahn. Conviene mencionar que, tanto los desvíos con corazón de punta móvil y con solución FAKOP, como el uso del estabilizador dinámico de vía, eran tecnologías novedosas en España. Actualmente, nuestro país es uno de los punteros en el diseño y fabricación de esos desvíos. En el AVE Madrid-Sevilla se logró una mejora en la estabilidad vertical de la vía con una explanación del terreno basada en técnicas usadas en la construcción de carreteras. En cuanto a la estabilidad lateral, se perfeccionó la tecnología de Renfe poniendo una traviesa nueva de hormigón pretensado o postensado y una sujeción elástica, que permitió soldar el carril indefinidamente. Por otro lado, la utilización de la barra elemental de 36 m –actualmente, se han conseguido los 90 m– posibilitó una disminución importante de discontinuidades en la vía en forma de soldaduras eléctricas.

Gracias al conocimiento adquirido en la fase de montaje, los técnicos ferroviarios de Ineco se ocuparon –tras la puesta en servicio en 1992– de la asistencia al mantenimiento de vía e infraestructura, formando un equipo que hoy continúa trabajando para Adif en la línea Madrid-Sevilla en las bases de mantenimiento de Mora, Calatrava y Hornachuelos. Ernesto Giménez y Santos López (junto con Reyes García) continúan hoy en día en la base de Calatrava; Alfredo Olivera, Francisco Rebollo y Juan Carlos Olivera, en la base de Hornachuelos y Francisco Casasola y José María Melero, en la base de Antequera. Por su parte, Jesús Márquez Sánchez, está actualmente en la línea de alta velocidad de Extremadura, Antonio Millán en la base de Villarubia del AVE Madrid-Valencia y José Luis G. Sarachaga se encuentra destinado en la base de Vilafranca del Penedés, en la línea AVE Madrid-Barcelona-Frontera francesa. Rodolfo Velilla continúa en Ineco como jefe de mantenimiento de la línea Madrid-Sevilla y Manuel Corvo de experto sénior ferroviario.

En diciembre de 1991, Ineco colaboró con la Administración preparando las comparecencias parlamentarias del entonces secretario de Estado Emilio Pérez Touriño sobre la inminente inauguración de la línea. El 14 de abril de 1992 se realizó un viaje inaugural en el que se trasladaron hasta Sevilla parte del Gobierno, representantes de Renfe y el Ministerio, de las empresas constructoras y el equipo redactor de los proyectos de Ineco. La duración del viaje fue de dos horas y 50 minutos. El éxito de la operación hizo posible que el 20 de abril se realizara el primer viaje comercial de la línea.

A partir de este año y hasta el día de hoy, la alta velocidad ha sido una apuesta imparable solventando grandes desafíos: el primero, la orografía extremadamente complicada de la península ibérica. Con un terreno tan accidentado, la construcción de infraestructuras sobre las que circulen trenes de alta velocidad –las velocidades entre 250-300 km/h requieren un trazado con desniveles no superiores a un 3%– ha implicado la ejecución de túneles y viaductos específicos para este tipo de tráfico, con exigentes parámetros de plataforma de vía y rigurosas especificaciones técnicas.  Otro aspecto singular del caso español y no menos retador, ha sido la utilización de equipos y alta tecnología de distintos fabricantes, generando una gran capacidad de integración y desarrollo de distintas tecnologías. A ello hay que añadir que la red ferroviaria española estaba construida con el denominado ancho ibérico (1.668 mm), incompatible con el ancho de vía estándar o internacional (1.435 mm) definido para la alta velocidad y utilizado en la mayoría de los países europeos.  Esto ha supuesto la búsqueda de soluciones como la incorporación de los tres carriles para hacer compatible la circulación de ambos anchos, el desarrollo de modernos y rápidos cambiadores de ancho ibérico a internacional y el montaje de vía adaptando elementos como el balasto, vía en placa, las traviesas y sus correspondientes sujeciones, los aparatos de vía, electrificación, instalaciones fijas, señalizaciones, etc. La adaptación del ancho de vía a los estándares internacionales culminó en 2012 con la conexión, por primera vez con Europa, a través de la línea desde Barcelona a Figueres-Perpiñán.

La materialización de un proyecto ferroviario de esta magnitud y las disciplinas técnicas que comporta, ha permitido a la ingeniería e industria española estar a la vanguardia en construcción, instalación, puesta a punto y mantenimiento de las líneas de alta velocidad.  Desde su definición tecnológica y los primeros movimientos de tierra, hasta la puesta en servicio, se ha logrado llevar a cabo una obra sin precedentes. Prácticamente todo el sector ferroviario se ha volcado durante décadas en todo un largo y complejo proceso que va desde los estudios previos de viabilidad, estudios informativos, estudios de demanda, análisis económico-financieros, estudios de impacto ambiental, y los proyectos constructivos de obra civil y de electrificación y señalización, hasta los diseños de estaciones y operaciones urbanísticas de acceso a las ciudades, terminando en la supervisión, construcción, puesta en marcha, explotación y mantenimiento de las líneas y todas las obras singulares como túneles y viaductos.

Fruto de ese esfuerzo, el siglo XX español se cerró con el mayor proyecto de ingeniería del transporte, el primer paso para el cambio que ha llevado a la red de ferrocarril a las más altas cotas de eficiencia y calidad

Las diferencias técnicas y de comunicaciones entre las redes ferroviarias europeas ha sido otro escollo a superar. Aislada de Europa por un ancho de vía diferente, España fue el primer país interesado en salvar distancias y perseguir la interoperabilidad con sus países vecinos. Hoy, es líder en implantación de ERTMS (European Rail Traffic Management System), un sistema europeo de gestión del tráfico ferroviario que permitirá la circulación libre de trenes por toda Europa salvando las barreras técnicas y operacionales de cada equipo y país gracias a un lenguaje común.

Los conocimientos técnicos y legales de los técnicos de Ineco les ha llevado a colaborar activamente con la agencia ERA de la UE en el proceso de armonización de las redes ferroviarias europeas. Tras años de dedicación, se ha logrado la estandarización de los sistemas de señalización europeos y la interconexión de los enclavamientos con este sistema. Este y otros servicios han permitido adquirir un elevado know-how en comunicaciones y sistemas de seguridad, equipos de detección en la vía, y sistemas de protección del tren. Esta experiencia se ha complementado con el diseño y construcción de los centros de control de regulación de tráfico centralizado (CRC), desde los que se gestionan las vías de alta velocidad mediante el sistema Da Vinci, de patente española, exportado a Estados Unidos, Marruecos y Lituania, y utilizado en los metros de Londres y Medellín.

En cuanto al material rodante, en España operan trenes de distintos fabricantes, entre ellos los de las empresas españolas Talgo y CAF. Consultoras e ingenierías han participado en las operaciones ferroviarias con trenes de última generación que incorporan tecnología de altas prestaciones, que son las que permiten velocidades de hasta 350 km/h. Su puesta en marcha supone la participación de expertos en circulación, en la recepción de material móvil y equipos embarcados.

25 experiencias

«Recuerdo una maratón de dos semanas, con los fines de semana incluidos, preparando el proyecto de instalaciones ferroviarias para el tramo de la línea Madrid-Sevilla que gestionaba el Ministerio de Fomento. Este fue mi primer contacto con la alta velocidad»
Agustín Barriobero, ingeniero de telecomunicaciones

«Lo que en un principio era una variante ferroviaria más (Brazatortas-Córdoba) se convirtió en el origen de un nuevo ferrocarril y yo diría más, de un nuevo medio de transporte: la alta velocidad. Primero, los proyectos de infraestructura y vía; luego el control: vía, catenaria, instalaciones de seguridad, y más tarde el mantenimiento, nos convirtieron en una empresa referente a escala mundial en este campo»
Juan Barrón, ingeniero de caminos

«Brazatortas –así llamaban algunos al NAFA– supuso un reto que iba a marcar el futuro del ferrocarril. Empezamos en 1986 trazando con plantillas sobre la cartografía en papel, y pusimos el broche cinco años más tarde, subidos en el tren en el último viaje de pruebas el día antes de la inauguración. El paso por las alineaciones curvas peraltadas nos lo indicaba la inclinación de la superficie del agua de un vaso situado en la mesa; aquello ya era una realidad: circulábamos a 250 km/h»
Pedro Benito, ingeniero de obras públicas

«El proyecto del AVE Madrid-Sevilla de mando y control de tráfico ferroviario fue un proyecto llave en mano, en el que faltaba la confección del proyecto de instalaciones de seguridad de los talleres de Cerro Negro. Después de la inauguración, en abril de 1992, la línea quedó abierta en Córdoba con el famoso paso a nivel, que se cerró cuando se soterró dicha estación con un proyecto de instalaciones de seguridad de Ineco»
Jesús Castillo, ingeniero industrial

«Para aquel proyecto, se necesitaba un miembro del equipo de delineación, con el propósito de mantener el estándar de Ineco en este campo. Sin pensármelo dos veces, me presenté voluntario para esa tarea: así se hacían las cosas por aquel entonces»
Luis Colomer, delineante

«Uno de los avances fundamentales fue la utilización de la auscultación geométrica como base para la recepción global de la vía y para su mantenimiento. También comenzó a desarrollarse la idea de la auscultación dinámica, complementaria de la geométrica, como elemento clave del mantenimiento ferroviario. Esta concepción del mantenimiento se exportó a líneas convencionales como los corredores Levante, Mediterráneo y Eje Atlántico»
Manuel Corvo, experto ferroviario sénior

«En electrificación en corriente alterna en España, no se tenía experiencia de la convivencia de los dos sistemas (25 kVca y 3 kVcc) en un mismo emplazamiento o estación. Con los avances que se consiguieron se pudo adecuar su funcionamiento sin que se produjeran interferencias funcionales»
Adolfo Cruz, ingeniero técnico industrial

«En 1986, entré a formar parte del equipo del NAFA; éramos muy jóvenes, con Jorge Nasarre y Santiago Rallo a la cabeza. Gracias a su conocimiento, pudimos redactar los proyectos básicos y constructivos de 320 kilómetros en el plazo récord de un año. Nos apoyamos en el modelo francés, adaptándolo a la orografía y características de España»
Marisa de la Hoz, ingeniera de obras públicas

«Desde el principio participé en la redacción y coordinación de los proyectos de los tramos entre Getafe y Córdoba, así como de las estaciones de Ciudad Real y Santa Justa. Fue un gran reto, pues en España no había ninguna normativa que recogiera los parámetros necesarios para la circulación de trenes a 250 km/h, que se realizó en menos de 6 años»
Víctor Duarte, ingeniero de caminos

«Participé en el diseño de la estación Puerta de Atocha, como parte de un equipo encargado de la redacción de los proyectos de las principales estaciones. De aquellos frenéticos años, recuerdo los medios técnicos: calculadoras científicas de bolsillo, plantillas de todo tipo, escalímetros, planímetros, tramas, cangrejos, cuchillas de afeitar… La delineación clásica era nuestra tecnología punta»
Santiago Espinosa, técnico ferroviario

«Entré en Ineco como experta en cartografía digital para un proyecto, que en todos sus aspectos se presentaba como un reto. Muchas horas de trabajo, alguna noche sin dormir revisando los cálculos obtenidos por el nuevo “programa”, quebraderos de cabeza y algún que otro nervio, finalmente obtuvieron su recompensa con el éxito del proyecto. Lo mejor, el equipo humano y los que fueron nuestros maestros»
Dulce Galán, ingeniera en geomática y topografía

«Fue la primera vez que se usó en España cartografía digitalizada, un arcaico GIS desarrollado por una empresa española. Se usaron dos ordenadores del tamaño de lavadoras industriales y cuya potencia era muy inferior al más simple de los smartphones que hoy en día llevamos en el bolsillo. Los miles de planos que componen el proyecto fueron impresos en dos plóteres de plumillas que funcionaban las 24 horas, ya que cada plano tardaba unos 50 minutos en imprimirse»
Víctor Gándaras, informático

«En 1988, entré en Ineco –entonces TIFSA– con Manolo Guerrero, magnifico profesional, ya jubilado. Me encontré una enorme mesa llena de planos de aparatos de vía… en alemán. Estos se iban a instalar en la nueva línea de AV. Tuvimos que ir muchas veces a Alemania para verificar su fabricación. Éramos cuatro personas en asistencia técnica a Renfe. Después y hasta hoy, mucha vía, alta velocidad, buenas experiencias y buenos compañeros, dentro y fuera de Ineco…»
Moisés Gilaberte, ingeniero de caminos

«Junto con Ulpiano Martínez y Rafael Herrera, nos adentramos en el campo del control de la superestructrura y de los novedosos desvíos. Con la llegada de técnicos como Rudolf Trenk, de DB Consult, se introdujo la tecnología alemana en la alta velocidad. Visitamos todas las obras entre Getafe y Villanueva de Córdoba, fue un no parar de reuniones y de sondeos y aparatos de vía. Finalmente, se consiguió el mantenimiento y ya han pasado 25 años»
Ernesto Giménez, técnico ferroviario

«¿Una catenaria para 250 km/h? ¿Alimentada con 25.000 voltios? ¿Qué es eso? Trabajar en el AVE a Sevilla, definitivamente nos abrió la puerta a una parte desconocida de Europa para muchos de nosotros. Hoy en día es Europa y el resto del planeta quienes se asoman a conocer España como referente en alta velocidad»
Francisco Javier Guerrero, ingeniero técnico industrial

«Se tuvo que contratar y formar en muy poco tiempo al equipo completo de las bases de mantenimiento para realizar una labor que hasta entonces no se había llevado a cabo en España. Inicialmente, solo se controlaba la superestructura. Posteriormente, se fueron incorporando el resto de las disciplinas: infraestructura, electrificación e instalaciones de seguridad. El grueso de este equipo sigue en Ineco y ha extendido su experiencia al resto de las líneas de alta velocidad»
Rafael Herrera, ingenierio de obras públicas

«Cuando llegamos a Córdoba en 1990, nos encomendaron que visitáramos los acopios de balasto para comprobar su estado. Posteriormente, se hicieron diversos ensayos para ver si cumplían con el pliego que era bastante estricto y sobre todo, que cumpliera el ensayo de degaste de Los Angeles (prueba de resistencia a la abrasión). Hoy en día, me siento orgulloso porque el balasto sigue respondiendo perfectamente después de 25 años»
Jesús Márquez, técnico ferroviario

«Las exigencias en cuanto a precisión en la alta velocidad son de milímetros. Por eso me sorprendió mucho que con el estabilizador dinámico, la vía no perdía ni un milímetro de nivelación y alineación y, sin embargo, el balasto quedaba compactado. Yo tenía mucha experiencia, adquirida en Renfe y en SNCF en los años 60, pero esto fue una gran novedad, indispensable para circular a 250 o 300 km/h sin limitaciones de velocidad para la estabilización por cargas después de los trabajos de mantenimiento»
Ulpiano Martínez, ingeniero de caminos

«Efectué trabajos de seguimiento de avance de las obras, tanto en superestructura como en la infraestructura de la vía, sondeos de calidad de la geometría, inspección geométrica y ultrasónica de soldaduras aluminotérmicas, instalación y control de aparatos de vía, etc. La experiencia adquirida en el NAFA me permitió continuar posteriormente en el mantenimiento de la línea durante 14 años»
Antonio Millán, técnico ferroviario

«Los comienzos de la alta velocidad en España fueron un parto distócico. Palabras de Elías García González, uno de los mejores ingenieros ferroviarios españoles en el último tercio del s. XX, maestro de quien esto escribe y apoyo técnico insustituible (por ejemplo, en la definición de la sección libre por efectos aerodinámicos de los túneles) en la concepción del primer proyecto (Getafe-Córdoba). A él y al reducido equipo colaborador de Ineco, debe mucho el ferrocarril español del s. XXI»
Jorge Nasarre, ingeniero de caminos

«Comenzamos a trabajar en el control del montaje de la superestructura entre Córdoba y Sevilla a mediados de 1990. Aún quedaban estructuras por levantar y en algunos tramos no había explanación, pero lo que si había era fecha de entrega: abril de 1992. Parecía que no iba a dar tiempo o que no se llegarían a los estándares de calidad que requería circular a 250 km/h. El comentario generalizado, incluso entre ferroviarios de toda la vida, era: “cuando lo vea lo creeré”. Y llego abril del 92 y lo vimos…, y lo creímos»
Juan Carlos Olivera, técnico ferroviario

«Mi primer contacto importante con la línea Madrid-Sevilla fue en 1984 desde Intecsa, donde realicé para Ineco los proyectos constructivos de plataforma y vía de los tramos comprendidos entre Brazatortas y Villanueva de Córdoba. Ese trazado, que inicialmente se diseñó para 160 km/h, hubo de actualizarse a una velocidad de 250 km/h, lo que supuso cambiar completamente la totalidad de los proyectos»
Esteban Rubio, ingeniero de obras públicas

«Solo éramos unos 20 y nos recayó la redacción de la adecuación de unos tramos entre Córdoba y Sevilla. Mi aportación fue apoyar en la medición de las unidades y en el raspado de planos, que se delineaban con tinta sobre papel vegetal. Después, estuve en otras obras, desde túneles hasta tranvías, y de nuevo en la alta velocidad con la línea Madrid- Barcelona-Frontera francesa, en la que participé de lleno, y muchas otras más en España y el exterior»
Roberto Salas, ingeniero de obras públicas

«Participé en la supervisión de la calidad del trazado del Córdoba-Sevilla, que junto al proyecto del NAFA y al control y supervisión del balasto y desvíos, fueron los precursores de la importante intervención de Ineco en las líneas de alta velocidad en España y en otras del exterior como Turquía, Arabia Saudí y el Reino Unido. El éxito se basó en la capacidad de trabajo de los jóvenes ingenieros de Ineco y en la experiencia y conocimiento de los técnicos de Renfe, y el éxito a futuro se logrará siendo competitivos»
José María Urgoiti, ingeniero de caminos

«Se consiguió sacar aquel proyecto adelante con unos criterios de recepción punteros para la época, como los vehículos de auscultación de vía, además del control geométrico y ultrasónico de todas y cada una de las soldaduras aluminotérmicas realizadas in situ. Una vez inaugurada la línea, Ineco ha participado en el diseño, gestión y desarrollo del modelo de mantenimiento de alta velocidad, que Adif sigue aplicando actualmente»
Rodolfo Velilla, técnico experto sénior

25 años en imágenes

]]>
https://www.revistaitransporte.es/25-anos-de-la-alta-velocidad-espanola/feed/ 0
Delegación de expertos en Alta Velocidad India (HSRC) https://www.revistaitransporte.es/delegacion-de-expertos-en-alta-velocidad-india-hsrc/ https://www.revistaitransporte.es/delegacion-de-expertos-en-alta-velocidad-india-hsrc/#respond Fri, 14 Oct 2016 11:02:22 +0000 http://www.revistaitransporte.es/?p=2172

Ineco ha recibido a una delegación de expertos de High Speed Rail Corporation of India Limited (HSRC) en las oficinas centrales de Madrid. En la imagen, el presidente de Ineco, Jesús Silva, junto al jefe de la expedición Vijay Anand, director general de Proyectos de Vikas, y miembro del Comité de Dirección de HSRC.

La delegación ha visitado las líneas de alta velocidad en España (AVE) de Madrid, Alicante, Valencia, Barcelona, Sevilla y Málaga. Ineco está llevando a cabo en India el proyecto del nuevo corredor de alta velocidad entre Delhi y Calcuta junto a la consultora india ICT.

]]>
https://www.revistaitransporte.es/delegacion-de-expertos-en-alta-velocidad-india-hsrc/feed/ 0
Cómo ir en AVE desde Nueva Delhi a Calcuta https://www.revistaitransporte.es/como-ir-en-ave-desde-nueva-delhi-a-calcuta/ https://www.revistaitransporte.es/como-ir-en-ave-desde-nueva-delhi-a-calcuta/#respond Tue, 02 Feb 2016 18:55:57 +0000 http://www.revistaitransporte.es/?p=11

La ingeniería española y sus 3.000 kilómetros de AVE han convencido al país con una de las redes ferroviarias más extensas del mundo. Un equipo de ingenieros y expertos de Ineco, Typsa e ICT llevan desde 2015 trabajando en perfilar hasta el último detalle el estudio de viabilidad de la futura línea de alta velocidad que conectará la capital Nueva Delhi con Calcuta.

Tras años de iniciativas postergadas, el Gobierno actual –la Alianza Democrática Nacional (NDA)– dirigido por el primer ministro Narendra Modi, ha dado el impulso definitivo para implantar la alta velocidad entre sus cuatro grandes ciudades: Nueva Delhi, Calcuta, Bombay y Chennai. Estas cuatro metrópolis juntas suman una población de 55 millones en un país con 1.276 millones de habitantes (una sexta parte de la población mundial). Nueva Delhi tiene un área metropolitana de cerca de 17 millones de habitantes, Bombay, 18, Calcuta, 14, y Chennai, antiguamente Madrás, en torno a 6 millones.

El Gobierno actual ha dado el impulso definitivo para implantar la alta velocidad en el país

Modi ha convertido en el eje principal de su mandato el desarrollo industrial del país, representado por la campaña ‘Hazlo en India’, que pretende fomentar la producción interna y reducir la dependencia del exterior. Pero para estimular su economía, la construcción de infraestructuras, especialmente las ferroviarias y carreteras, son cruciales. Desde su llegada al Gobierno en verano de 2014, el primer ministro puso en marcha el denominado Diamond Quadrilateral Program, un rombo de cuatro extremos formado por las ciudades de Delhi, Calcuta, Bombay y Chennai, separadas por más de 1.000 kilómetros y conectadas por modernas infraestructuras ferroviarias: el germen de la futura red de alta velocidad de la India. El proyecto de este corredor abarca 14 estados y servirá de motor económico a la vez que contribuirá a rejuvenecer la vetusta red ferroviaria del país, en la que diariamente operan más de 18.000 trenes, viajan cerca de 23 millones de pasajeros y se transportan alrededor de 2,6 Mt de mercancías.

Aunque el tren es el medio de transporte más utilizado en la India –el país está literalmente tejido con una red de 64.460 kilómetros– la modernización de sus infraestructuras y la mejora de los tiempos de viaje y la seguridad son una cuenta pendiente que las nuevas inversiones pretenden subsanar.

Para la adjudicación de este concurso, Ineco ha contado con el apoyo y la coordinación comercial de la oficina de Expansión Exterior de España en la India. Desde Nueva Delhi, su delegado, Pedro Sinués, ha comentado que “la capacidad y experiencia técnica de las empresas españolas ha permitido que concursen al Diamond Quadrilateral, que ha situado a la India en el mapa internacional de la alta velocidad”. “Una prueba de ello –añade Sinués– es que el consorcio liderado por Ineco compitió con otros 11 consorcios internacionales. Por ello, cobra más importancia que dos empresas españolas lideradas por Ineco puedan aplicar su conocimiento adquirido en España en un corredor tan emblemático (conectando la que fue capital de la India hasta 1911 con la actual) como importante en la vertebración socio-económica del país”.

El importe adjudicado supera los dos millones de euros y el plazo de ejecución es de un año

El estudio, encargado por la sociedad estatal High Speed Rail Corporation of India Ltd. (HSRC), incluye estudios de demanda; análisis previo de alternativas de trazado; cálculo de tiempos de recorrido; selección de la tecnología ferroviaria a implementar (ancho de vía, superestructura de vía, electrificación, instalaciones de seguridad y comunicaciones, etc.); obras singulares necesarias; rehabilitación y reasentamiento de las zonas pobladas afectadas; análisis medioambiental; material rodante y operación y mantenimiento. Finalmente, se realizará un análisis económico-financiero que servirá para determinar la viabilidad de la nueva línea así como el método de financiación más adecuado. El importe adjudicado supera los dos millones de euros y el plazo de ejecución es de un año.

La longitud del corredor es de unos 1.500 kilómetros y en él se encuentran ciudades de gran interés comercial, social y turístico como Nueva Delhi, Agra (ciudad en la que se encuentra el conocido Taj Mahal), Aligarh, Kanpur, Lucknow, Allahabad, Mughal, Benarés, Sarai, Patna, Gaya, Dhanbad, Asansol, Durgapur y Calcuta. La línea discurre por una zona bastante llana, próxima al río Ganges, y atravesando diversos ríos y arroyos, lo que requerirá el diseño de viaductos.

Para Félix Zapata, director técnico del proyecto e ingeniero de Ineco, “el trabajo consiste básicamente en analizar la viabilidad de su construcción teniendo en cuenta su coste económico y las ventajas sociales que conllevará. Además, ofreceremos el modelo financiero más adecuado para su implementación”. “Los trabajos –añade Zapata– van dirigidos a alcanzar velocidades y niveles de confort y seguridad dentro de los estándares modernos de la alta velocidad. Para ello, propondremos la tecnología ferroviaria más adecuada: tipo de vía (balasto, vía en placa), electrificación, instalaciones de seguridad y comunicaciones, material rodante, especificaciones para la operación y mantenimiento de la nueva línea de alta velocidad, etc.”

La extensa red ferroviaria india cuenta con un gran potencial y una industria propia, pero también muchos retos: solo un 33% de su red está electrificada, apenas cuentan con redes de fibra óptica, carecen de cerramiento, las estaciones no disponen de sistemas de compra de billetes ni de controles de seguridad, etc. El proyecto incluye la adaptación de las estaciones actuales a la alta velocidad o, en su defecto, la propuesta de ubicación y diseño preliminar de nuevas estaciones. Así pues, la construcción de una infraestructura ferroviaria de las características mencionadas con anterioridad supondrá un avance muy importante en la red ferroviaria india.

Ineco llevó a cabo en 2014 para Ferrocarriles de la India el estudio de viabilidad de la conexión ferroviaria con alta velocidad entre Haldia y Howrah, un trabajo realizado con las empresas españolas Ayesa y Prointec, que forma parte de los proyectos previstos en el Diamond Quadrilateral. Además, en 2009, Ineco realizó la asistencia técnica de las obras del metro de Bombay.

]]>
https://www.revistaitransporte.es/como-ir-en-ave-desde-nueva-delhi-a-calcuta/feed/ 0
Con los brazos abiertos https://www.revistaitransporte.es/con-los-brazos-abiertos/ https://www.revistaitransporte.es/con-los-brazos-abiertos/#respond Tue, 02 Feb 2016 18:44:17 +0000 http://www.revistaitransporte.es/?p=350

España es el tercer destino turístico del mundo por volumen de ingresos y un año más ha vuelto a batir su propia marca, al superar en el año 2015 los 68 millones de visitantes, tres más que el año anterior. Un factor que según todos los análisis ha beneficiado al sector, es la situación de inestabilidad política a partir de 2011 en destinos mediterráneos como Túnez, Egipto o Turquía. Todos compiten con España, que recibe sobre todo turistas europeos: siete de cada diez son británicos, franceses, alemanes o italianos, aunque en términos relativos destaca el aumento de llegadas desde EE. UU. y países asiáticos. Según datos de Turespaña, casi el 80% del total llegaron por vía aérea (la mitad en una aerolínea de bajo coste), dato en el que es determinante la insularidad de algunos de los destinos más turísticos del mundo, como Baleares y Canarias. Así, el conjunto de los 46 aeropuertos españoles registraron en 2015 más de 207 millones de pasajeros, un 5,9% más que el año anterior.

Durante 2015, ocho de cada diez visitantes llegaron a alguno de los 46 aeropuertos españoles

Además de los dos grandes aeropuertos españoles, Adolfo Suárez Madrid-Barajas y Barcelona-El Prat, que entre los dos sumaron el 41,7% con 86,5 millones, más de 101,7 millones de pasajeros –el 49,1% del total de la red– se contabilizaron en los 14 aeropuertos clasificados como “turísticos”, que coinciden con los destinos más visitados: Baleares, Palma de Mallorca, Ibiza y Menorca; la Comunidad Valenciana, con los aeropuertos de Valencia y Alicante; Andalucía, con Málaga y Sevilla; Canarias, con los aeropuertos de Gran Canaria, Tenerife Sur, Lanzarote, Fuerteventura y La Palma; y Cataluña, con los aeropuertos de Girona y Reus.

Todos ellos han experimentado procesos de mejora y ampliación para aumentar su capacidad a lo largo de la década de 2000, estrechamente ligados al crecimiento del turismo, conocidos como Plan Barajas, Plan Barcelona, Plan Levante, Plan Málaga, Plan Canarias, etc. Durante todo este tiempo, Ineco ha prestado sus servicios al Ministerio de Fomento y Aena en la planificación y ejecución de las actuaciones. Desde 2008, se encarga también de la Oficina de Previsiones de Tráfico, que desempeña un papel fundamental en la planificación aeroportuaria. Varias veces al año, un equipo de ingenieros y técnicos actualiza las previsiones que se elaboran con un modelo macro-econométrico llamado PISTA (Prognosis Integrada de Sistemas de Tráfico Aéreo), también desarrollado por Ineco, con una metodología específica basada en el concepto de ‘red’ y modelos independientes para los segmentos nacional e internacional, apoyados en variables económicas significativas. Además, en la elaboración de las previsiones particulares de cada aeropuerto y para el corto-medio plazo se tienen en cuenta otros factores como por ejemplo: la competencia con otros modos de transporte (principalmente el AVE), la existencia de otros aeropuertos en el área de influencia, cambios en la oferta de las compañías (nuevos destinos, más frecuencias, nuevos modelos de avión empleados, etc.), eventos puntuales (competiciones deportivas, cumbres, etc.) y otros.

Desde 2008, Ineco se encarga también de la Oficina de Previsiones de Tráfico, que desempeña un papel fundamental en la planificación aeroportuaria

No solamente se prevén volúmenes de pasajeros, operaciones y mercancías para cada uno de los aeropuertos de la red, sino que también se estiman los valores de diseño (PHD y AHD) que resultan imprescindibles de cara a una adecuada planificación de las infraestructuras, ya que permiten detectar qué necesidades tendrán los aeropuertos y además, cuándo habrá que llevar a cabo las actuaciones. Los resultados de las previsiones de tráfico se emplean en la elaboración de los planes de negocio e inversión de Aena, así como para diseñar estrategias comerciales en los aeropuertos, de ahí que revistan una gran relevancia.

Otros modos

Si bien el aéreo es con mucho el de mayor peso en el reparto modal (es el elegido por casi el 80%) entre los turistas internacionales, más del 18% recurren a la carretera y un 1,4% al modo marítimo. Los cruceros ganan protagonismo año tras año en todo el mundo y también en España, donde en 2015 los puertos españoles, con los de Barcelona, Baleares y Canarias a la cabeza, han recibido alrededor de 8 millones de visitantes, según datos del Ministerio de Fomento.

Más turistas, más ingresos aeroportuarios

La positiva evolución del mercado aéreo tiene un impacto notable en la economía nacional, puesto que según datos del Gobierno español, el transporte aéreo aporta el 7% del Producto Nacional Bruto, genera 140.000 empleos directos y 440.000 si se incluyen los indirectos. Por un lado, porque parte de los ingresos aeronáuticos proviene de las tasas que el operador (Aena, en el caso español) cobra a las aerolíneas por cada pasajero, y, por otro, a través de los ingresos comerciales: es decir, las tiendas, restaurantes, aparcamientos y otros espacios y servicios no aeronáuticos que se concesionan a terceros (ver IT54). Este capítulo representa ya más de una cuarta parte (el 25,7% en 2014) de los ingresos totales de Aena, que en 2014 ascendieron a 3.165 millones de euros, un 8% más que en el ejercicio anterior.
]]>
https://www.revistaitransporte.es/con-los-brazos-abiertos/feed/ 0