A. Águila – ITRANSPORTE https://www.revistaitransporte.es INGENIERÍA Y CONSULTORÍA DEL TRANSPORTE Thu, 09 Dec 2021 22:46:14 +0000 es hourly 1 https://wordpress.org/?v=5.9.4 Tecnología satelital para el ferrocarril europeo https://www.revistaitransporte.es/tecnologia-satelital-para-el-ferrocarril-europeo/ Wed, 08 Dec 2021 23:06:46 +0000 https://www.revistaitransporte.es/?p=5588

Los Sistemas Globales de Navegación por Satélite (GNSS, por sus siglas en inglés) son de gran utilidad para multitud de sectores, incluido el transporte. En 2016, Europa declaró los servicios iniciales de su propio sistema, Galileo, que supone un enorme avance en cuanto a prestaciones, calidad y diversidad de servicio, además de ofrecer independencia y soberanía a los usuarios.

A diferencia del GPS estadounidense, el GLONASS ruso o el BeiDou chino –con los que, por otro lado, es interoperable–, el sistema europeo Galileo es el primero de la historia diseñado específicamente para uso civil, para diferentes grupos de usuarios y distintos servicios (abierto, de alta precisión, autenticado, gubernamental, emergencias/búsqueda y rescate, etc.). Pero, además, ofrece unas prestaciones sin precedentes en cuanto a precisión y calidad de las señales.

Proyectos europeos como RailGAP, en el que participa Ineco junto con Adif y CEDEX, dan continuidad a investigaciones anteriores sobre el uso del posicionamiento GNSS. / FOTO_MITMA

En el ámbito ferroviario, las aplicaciones basadas en GNSS sirven, por una parte, para optimizar la logística, mejorar la gestión del material rodante y remolcado, ofrecer servicios de información al viajero, etc.; y por otra, aumentar la seguridad y el control con un coste bajo, al poder sustituir las balizas físicas de ERTMS (Sistema Europeo de Señalización Ferroviaria) por balizas virtuales. Así, el uso del posicionamiento por satélite con ERTMS permitirá reducir costes en el despliegue del sistema que la Comisión Europea está impulsando en los principales corredores del continente –labor que, precisamente, coordina Ineco (ver ITRANSPORTE 70)–, sobre todo en líneas regionales y de bajo tráfico.

De la baliza física a la virtual

La compañía, junto con Adif, el Administrador de Infraestructuras Ferroviarias español, y el CEDEX, el Centro de Experimentación de Obras Públicas del MITMA, y otros socios internacionales, ha participado en los últimos años en varios proyectos europeos de innovación dedicados a probar y caracterizar la tecnología de satélite en el ámbito ferroviario.

Las pruebas con trenes en un entorno real que hasta ahora se han realizado, como las del proyecto ERSAT GGC en 2019 (ver ITRANSPORTE 68), demuestran la idoneidad de Galileo frente al resto de sistemas. Sin embargo, la tecnología presenta aún inconvenientes técnicos que es preciso resolver antes de llegar al mercado en forma de soluciones comerciales. Así, la orografía de los trazados de algunas líneas y la presencia de elementos como túneles, pasos superiores, obstáculos naturales o áreas urbanas provocan zonas ‘oscuras’ en la transmisión de la señal GNSS, lo que limita el funcionamiento de las balizas virtuales. Además, existen otros problemas derivados de las interferencias intencionadas como el jamming o el spoofing. Aquí es donde la fusión con otras tecnologías y desarrollos de navegación pueden ayudar a resolver estos problemas.

El uso de GNSS para operaciones ferroviarias depende en gran medida de la configuración del entorno; de ahí la necesidad de clasificar e identificar los factores que contribuyen al funcionamiento en condiciones degradadas

El proyecto RAILGAP, (RAILway Ground truth and digital mAP), que arrancó a principios de 2021 y se prolongará hasta 2023, da continuidad a las investigaciones anteriores en este ámbito. Incluido en el programa Horizonte 2020, y gestionado por la EUSPA, Agencia de la Unión Europea para el Programa Espacial, está liderado por el gestor de infraestructuras italiano Rete Ferroviaria Italiana (RFI) y en él participan las empresas (Radiolabs, Hitachi Rail STS, RINA, Trenitalia, ASSTRA, Adif, CEDEX, Ineco, DLR, Université Gustave Eiffel y Unife).

Su objetivo es desarrollar soluciones innovadoras de alta precisión para la obtención del denominado ground truth y de los mapas digitales de las líneas ferroviarias, esenciales para obtener el posicionamiento de los trenes con fiabilidad y eficiencia. El ground truth proporcionará los datos de coordenadas geográficas del tren en función del tiempo, junto con variables dinámicas del mismo como la velocidad o la aceleración. Para ello, se recopilarán cantidades masivas de datos de trenes, tomadas con varios tipos de sensores, con lo que se pretende mejorar la exactitud del mapeo en las zonas ‘oscuras’, como áreas urbanas, con abundante vegetación, trincheras, etc.

Las soluciones propuestas se basan en la utilización de otros sensores como cámaras, sensores LIDAR o unidades inerciales junto con tecnologías de inteligencia artificial para mejorar el posicionamiento proporcionado por GNSS en las zonas ‘oscuras’. Los sensores inerciales son utilizados para detectar las fuerzas que actúan sobre el tren, lo que permite estimar su desplazamiento en el tiempo, y los sensores ópticos (cámaras y LIDAR), combinados con sistemas de inteligencia artificial, permiten calcular la posición del tren en relación a elementos clave situados en la vía, permitiendo posicionamientos centimétricos en condiciones óptimas.

Los 30 satélites (24 operativos y 6 de repuesto) con los que contará el sistema Galileo una vez se complete el despliegue, con servicios iniciales desde 2016, serán capaces de localizar receptores con un margen de error inferior a 1 metro. Además, es interoperable con el GPS norteamericano, el GLONASS ruso o el BeiDou chino.

RAILGAP contribuirá a la sostenibilidad del sistema ERTMS y los sistemas de mando y control para la modernización de las líneas regionales y locales, reduciendo así el consumo de energía.

Ineco participa en los ocho paquetes de trabajo del proyecto, y liderará el cálculo del ground truth basado en una solución de hibridación de sensores. También contribuye de forma significativa a la identificación y caracterización de los sensores ópticos necesarios para el proyecto, sobre todo cámaras y sensores LIDAR. Las actividades del paquete de trabajo 7, que tienen por objeto implementar el mapa digital, también se apoyarán en la experiencia de Ineco en el uso de inteligencia artificial aplicado a imágenes para la identificación de elementos clave, tal y como ya ha hecho para otros proyectos para Adif.

En esta línea de trabajo, Ineco desarrollará los algoritmos que permitan, haciendo uso de las imágenes captadas por las cámaras ópticas y estereoscópicas, reconocer los elementos relevantes de la vía y posicionarlos utilizando técnicas avanzadas de tratamiento de imágenes e Inteligencia Artificial.

Por su parte, Adif trabaja también en todos los paquetes del proyecto, además de movilizar un vehículo para las pruebas, como ya había hecho anteriormente en el proyecto ERSAT GGC. El Laboratorio de Interoperabilidad Ferroviaria del CEDEX (líder mundial en ERTMS, ver IT32 y 53) se centrará en la arquitectura de los equipos en el tren, la fase de recogida de datos y la integración en el laboratorio.

RAILGAP propone emplear cámaras, sensores LIDAR o unidades inerciales junto con tecnologías de inteligencia artificial para mejorar el posicionamiento GNSS en las zonas ‘oscuras’.

Proyectos anteriores

Anteriormente, tanto Ineco como Adif y el CEDEX, han participado en otros proyectos de investigación e innovación en aplicaciones ferroviarias GNSS, como ERSAT GGC (2017-2019), también enmarcado en el programa Horizonte 2020 (ver ITRANSPORTE 69), y GATE4RAIL (2018-2021), dentro de Shift2Rail, el programa sectorial de la Comisión Europea dedicado a la innovación dentro del sector ferroviario.

El objetivo del proyecto ERSAT GGC, en el que participaron 14 empresas de cinco países europeos, era estudiar la implantación de la tecnología de satélite en el sistema europeo de gestión del tráfico ferroviario ERTMS a través de balizas virtuales. Para ello, se definió una metodología y una serie de herramientas SW para clasificar una línea de cara a la implantación de balizas virtuales a lo largo de su recorrido.

Dentro del proyecto también se llevó a cabo una campaña de pruebas en tres países, Francia, Italia y España, donde se tomaron los datos de entrada que alimentaban a la herramienta de clasificación.

Por otra parte, en 2018 se inició GATE4RAIL, que buscaba avanzar en la virtualización de las pruebas del sistema ERTMS basado en posicionamiento mediante satélites. El consorcio que ha desarrollado el proyecto estaba integrado, además de por Ineco, por Radiolabs (líder, Italia), Rete Ferroviaria Italiana (RFI), Ifsttar (Francia), M3Systems (Bélgica), Unife (Bélgica), CEDEX (España), Bureau Veritas Italia (BVI), y Guide (Francia). La plataforma desarrollada estaba formada por tres bloques: GNSS, tren y vía, y el reto consistió en ejecutar una simulación con módulos de cada bloque ubicados en distintos países. En este proyecto, concluido en 2021, la labor de Ineco se centró en la arquitectura de sistema y la definición de los escenarios, además de proporcionar los datos de obstáculos por medio de la herramienta GNSS4RAIL.

Retos del uso de GNSS en el sector ferroviario

¿EL TREN DEL FUTURO? Tren robot autónomo para transporte de mineral de la multinacional Rio Tinto en Pilbara, al oeste de Australia. / FOTO_RIO TINTO

El uso de GNSS supone para el sector ferroviario retos transversales y otros de índole técnica. Las aplicaciones relacionadas con la protección, la ciberseguridad, la normativa legislativa y reglamentaria, la estandarización o la agilidad en los procesos de implementación, corresponden al primer grupo. Con el segundo están relacionadas aquellas otras tales como el tratamiento de las interferencias, el efecto multipath, la integridad de la señal de satélite, la resolución de las zonas ‘oscuras’ para la comunicación, como los túneles y las montañas, las líneas de alta complejidad, con bifurcaciones y cruces, o la precisión en el reconocimiento de líneas paralelas y estaciones.

El futuro de GNSS en el ferrocarril tiene hitos reconocibles a corto, medio y largo plazo. Los más próximos son los avances en la localización del tren con la mayor precisión posible, lo cual permitirá aumentar la capacidad de las vías. Otro hito es el desarrollo de la baliza virtual basada en la transmisión continua de datos PVT y que redundará en un ahorro de costes. Por último, la detección de movimientos del material rodante mientras el equipo ETCS de a bordo está desconectado, lo que se conoce como cold movement detection (CMD).

A medio plazo, se sitúa el desarrollo del ERTMS nivel 3, cuya característica definitoria es el cantonamiento móvil y que tendrá el efecto de gestionar la capacidad de las líneas en términos mucho más elevados que los actuales.

Y ya, a largo plazo, se sitúa el objetivo del tren autónomo, aunque ya hay algunas iniciativas en este campo, como la Rio Tinto Driverless Cargo Line, en Australia. Así, esta línea sin conductor conocida como ‘tren robot’ cuenta con 1.700 kilómetros de vías y 220 locomotoras monitorizadas, y registra un tráfico de datos de 12 GB/día y una lógica de detección de trenes automática basada en ERTMS nivel 2. Con esta arquitectura, la multinacional minera Rio Tinto ha desarrollado modelos predictivos para detectar posibles fallos en operaciones próximas y recomienda acciones de mantenimiento cuya aprobación final está en manos del personal técnico, como es lógico.

 

]]>
Balizas virtuales para los trenes europeos https://www.revistaitransporte.es/balizas-virtuales-para-los-trenes-europeos/ Thu, 09 Apr 2020 14:42:51 +0000 https://www.revistaitransporte.es/?p=4425

En diciembre de 2017 comenzaba este proyecto europeo financiado por la GSA (European Global Navigation Satellite Systems Agency) dentro del Programa H2020 con una duración de 24 meses. Las 14 empresas europeas de cinco países de la UE que han participado en el proyecto ERSAT GGC son RFI (coordinador del proyecto), Hitachi STS (antes Ansaldo, coordinador técnico), RINA, Trenitalia, Radiolabs, Italcertified y Bureau Veritas por Italia; Adif, CEDEX e Ineco por España; IFSTTAR y SNCF por Francia y UNIFE por Bélgica.

El objetivo final es contribuir a la estandarización del proceso de certificación para la adopción de sistemas de navegación mediante satélites (GNSS) en el estándar de los sistemas de gestión del tráfico ferroviario ERTMS (European Rail Traffic Management System). El alcance del proyecto ha sido muy ambicioso y ha permitido trabajar en la consolidación de una arquitectura funcional ERTMS mejorada que incluya GNSS, estudios de seguridad, definición de un procedimiento para la clasificación de líneas ferroviarias en relación a la ‘baliza virtual’, desarrollo de un set de herramientas para ayudar en esa clasificación, campañas de medidas en tres países (Francia, España e Italia), análisis de los datos en los laboratorios, evaluación de la arquitectura, procedimiento y herramientas por NoBOs (Notified Bodies) independientes y, por último, difusión de los resultados y actividades del proyecto en diferentes foros nacionales e internacionales.

El concepto de ‘baliza virtual’ se lleva desarrollando desde hace varios años en proyectos previos lanzados por la GSA, ESA y Shift2Rail, y consiste en dar información de posicionamiento al tren por medio de las señales GNSS, en lugar de mediante las balizas físicas que requiere el ERTMS.

El concepto ‘baliza virtual’ se lleva desarrollando desde hace varios años y consiste en dar información de posicionamiento al tren por medio de las señales GNSS, en lugar de mediante las balizas físicas

Para ello, el equipo embarcado constará de un nuevo módulo llamado Virtual Balise Reader (VBR), que procesará las señales GNSS y comparará las coordenadas GNSS con la lista de coordenadas a bordo, reportando a la eurocabina la baliza virtual correspondiente cuando se alcancen las coordenadas almacenadas para la misma. De este modo, se podrá reducir el número de balizas físicas instaladas en las vías, con el consiguiente ahorro en tareas de instalación, mantenimiento, robos, etc. por parte de los administradores de infraestructuras, (Adif en el caso español). En ese sentido, es necesario contar con una recepción adecuada de la señal GNSS en los puntos donde se instalarían las balizas físicas, por lo que se requiere caracterizar las líneas ferroviarias en función de la ‘calidad’ de la señal GNSS recibida en cada tramo.

El procedimiento identificará los tramos/puntos donde es viable desplegar una baliza virtual de manera que las prestaciones de la señal GNSS en términos de disponibilidad y precisión sean las requeridas.

La participación de las empresas españolas en ERSAT GGC se ha distribuido de manera que CEDEX ha colaborado en la campaña de medidas, integrando las herramientas en su laboratorio y analizando los resultados de las distintas campañas, contribuyendo de manera notable en la demostración al cliente. Por su parte, Adif ha comprado los equipos necesarios para la campaña y ha proporcionado una línea y un tren laboratorio donde realizar las medidas que luego se analizarían.

Por último, Ineco ha tenido un papel clave al participar en casi todos los paquetes de trabajo, aportando su conocimiento en las áreas de GNSS y ERTMS dada su experiencia en proyectos previos como GRAIL, GRAIL 2, NGTC y STARS. En particular, la compañía ha contribuido a la consolidación de la arquitectura funcional ERTMS, la definición del procedimiento de clasificación de líneas, el desarrollo de varias herramientas del toolset, la participación en la campaña de medidas españolas, el análisis de los datos de las campañas italiana y española, y finalmente, contribuyendo a la demostración con el cliente y en las actividades de difusión.

Campaña de medidas en España

Para la campaña de pruebas en España, Adif seleccionó una línea dotada con un sistema de Bloqueo Telefónico (BT) y con baja densidad de circulaciones. En concreto, la línea nº 528 de la Red Convencional entre Almorchón (Badajoz)-Mirabueno (Córdoba), que es de tipo E, con una longitud total de 130,1 kilómetros y no electrificada, aunque los recorridos se realizaron entre las estaciones de Almorchón y La Alhondiguilla, que tiene una longitud de 94 kilómetros y una velocidad máxima de 60 km/h.

La coordinación de Adif, Ineco, CEDEX, IFSTTAR y DLR, fue clave para el éxito de la campaña española. Se realizó un ensayo estático de calibración de 12 horas y 20 recorridos durante 10 días de campaña, en diferentes horarios para cubrir las distintas posiciones de los satélites tanto de la constelación GPS como de Galileo. Con todos los datos tomados (señales GNSS, imágenes y odometría), se pasó a una fase de análisis, donde el set de herramientas desarrolladas también en el proyecto, permitiría clasificar la línea con relación a las principales amenazas locales de la señal GNSS en líneas ferroviarias: interferencias, multipath, NLOS (Non-line-of-sight) y prestaciones degradadas.

Todas las medidas se hicieron en un tren Talgo laboratorio (BT-02), que se equipó con:

  • Antena GNSS: AntCom G8-PN
  • Receptor GNSS: Javad Delta3
  • Receptor GNSS: Septentrio AsteRx2e
  • Splitter
  • Portátiles
  • UPS
  • Cámara de vídeo
  • Sistema ‘ojo de pez’

Principales efectos locales negativos para señales GNSS en vías de tren. / FUENTE_ERSAT GGC PROJECT

Desarrollo de herramientas (Simulador de prestaciones degradadas)

Ineco ha contribuido en el desarrollo de las diferentes herramientas con las que clasificar las zonas de las líneas de tren en verdes, amarillas o rojas, para la colocación de la baliza virtual. En concreto, se han desarrollado dos herramientas para integrarlas en el proyecto:

  1. SBAS_Health_Monitoring_tool (SHMT): asigna a cada satélite GPS un estado health status mediante el análisis del mensaje recibido de EGNOS (sistema de aumentación GNSS europeo).
  2. GNSS4Rail: herramienta de simulación que permite gestionar un modelo 3D muy preciso del entorno de la línea ferroviaria (tanto en entornos rurales como en urbanos) basado en un modelo de superficie y la capacidad de lanzar simulaciones puntuales o temporales a lo largo de toda la línea con diferentes constelaciones GNSS (GPS y/o Galileo) y para cualquier marco temporal. La inclusión de la constelación Galileo ha sido un valor añadido en el proyecto y ha permitido hacer simulaciones multiconstelación (uso de varias constelaciones GNSS), que es hacia donde va el mercado de las aplicaciones que tienen implicaciones en seguridad. Además, la capacidad de prognosis es una clara ventaja frente a otras aplicaciones que solo analizan datos reales estáticos pasados.

La herramienta GNSS4RAIL proporciona las siguientes ventajas en fase de despliegue:

  • Soporte para el análisis de viabilidad y planificación del despliegue de balizas virtuales en la línea.
  • Identificación preliminar de tramos viables para el despliegue.
  • Análisis tanto a lo largo de la línea ferroviaria (dominio espacial) como para un intervalo de tiempo (dominio temporal).
  • Minimiza las campañas de adquisición de datos con tren auscultador sobre todo gracias al análisis temporal.

Ventajas en la fase de operación:

  • Soporte como predictor de prestaciones de las balizas virtuales desplegadas.
  • Proporciona información pretáctica a la gestión de operaciones ferroviarias basadas en GNSS.

Los posibles usos de la herramienta no solo se limitan a la aplicación concreta de la baliza virtual, sino que puede ser utilizada para conocer de antemano cuál será la ‘cobertura’ de la señal GNSS en cualquier punto de una línea y en cualquier momento, y esos resultados se pueden utilizar para otras aplicaciones como la planificación de operaciones, el control de flotas, la información al viajero, ticketing, mantenimiento, etc. También tiene aplicación en otros sectores como el transporte por carretera, operaciones marítimas en puertos y operaciones aéreas de drones/aeronaves en U-Space.

Tecnología GNSS en ERTMS

El ERTMS será el único estándar de señalización futuro no solo en Europa, sino en todo el mundo, con un máximo nivel de seguridad (SIL4) y multisuministrador. La reducción de sus costes es el principal reto en el despliegue de este sistema, por lo que la integración de la tecnología GNSS en ERTMS ofrece:

  • Reducir el coste del sistema de señalización y los gastos de mantenimiento (reducción del equipo en vía).
  • Es una opción para la migración de líneas convencionales a ERTMS con GNSS.
  • Mejorará las prestaciones debido a una mejora de la odometría, se incrementará la disponibilidad y la fiabilidad del sistema.
  • Aumento de capacidad, nivel 3 de ERTMS.

El uso del posicionamiento por satélite con ERTMS permitirá un despliegue más económico en líneas regionales, contribuyendo a su expansión a la red ferroviaria europea. Por último, hay que destacar que se están llevando a cabo importantes sinergias y colaboraciones con otros proyectos de Shift2Rail (ej. TD (IP2-TD2.4) para implantar la tecnología de satélite en el ERTMS), que revelan el potencial de las tecnologías de posicionamiento por satélite en la próxima generación del ERTMS, y en diferentes proyectos de la GSA, EC y ESA. El éxito de este proyecto es fruto del esfuerzo de un equipo de distintas áreas de Ineco (Francisco J. Fernández de Líger, Beatriz Sierra, María Pedauyé, Ilie Cordero, Javier Espinosa, Víctor Quiñones, María Eva Ramírez y Antonio Águila) y de la colaboración y entendimiento con otras empresas del Mitma (CEDEX y Adif). Para más información http://www.ersat-ggc.eu/.

]]>
La constelación Galileo si muove https://www.revistaitransporte.es/la-constelacion-galileo-si-muove/ https://www.revistaitransporte.es/la-constelacion-galileo-si-muove/#respond Wed, 14 Jun 2017 09:12:05 +0000 http://www.revistaitransporte.es/?p=2708

Cuando el sistema de radionavegación y posicionamiento por satélite Galileo esté completamente operativo con sus 30 satélites desplegados se podrá localizar a personas y objetos con una precisión y rapidez hasta hoy día inalcanzables. Proporcionará, además, a Europa un sistema de navegación independiente de los sistemas actuales de posicionamiento por satélite como el GPS norteamericano que opera con 31 satélites, o el GLONASS ruso, que cuenta con 24.

Tanto el sistema norteamericano como el ruso, junto con el BDS chino, operan bajo control militar, por lo que Galileo es el único diseñado con fines civiles y totalmente abierto a usos comerciales. Sin embargo, también proporcionará independencia a los europeos respecto a los sistemas estadounidense y ruso, lo que reviste una importancia estratégica teniendo en cuenta que, en caso de bloqueo, hasta el 10% de la actividad económica europea depende en mayor o menor medida de la navegación por satélite.

La importancia de estos sistemas en la economía y el transporte mundial es cada vez mayor y sus usos cada vez más amplios. Es por ello que, tras más de diez años de trabajo, las instituciones e industria espacial europeas han logrado hacer realidad un proyecto propio con prestaciones altamente competitivas que dará por fin a Europa su deseada independencia tecnológica y estratégica. Permitirá, además, acceder a un mercado con gran potencial de crecimiento. Ver https://www.gsc-europa.eu/.

Galileo proporcionará señales de posicionamiento, navegación y medición del tiempo con una precisión mucho mayor que los otros sistemas

Cuando esté totalmente operativo, Galileo, desarrollado por la UE con la asistencia de la Agencia Espacial Europea (ESA)  y operado para la provisión de servicio por la Agencia Europea de Navegación por Satélite (GSA), proporcionará señales de posicionamiento, navegación y medición del tiempo con una precisión mucho mayor que los otros sistemas, gratuitamente, sin límite de usuarios y garantizando que las señales estén disponibles en cualquier parte del mundo. Será interoperable con el sistema GPS y prestará un servicio comercial de pago de alta precisión y autenticación.

Además, Galileo ofrecerá otros dos servicios: el servicio PRS (Public Regulated Service) con señales de alta robustez frente a interferencias maliciosas y destinado a un uso gubernamental por organizaciones de seguridad y protección civil, y el apoyo al servicio SAR (búsqueda y rescate), contribución europea al servicio internacional del salvamento COSPAS-SARSAT. Incorpora como gran innovación un canal de retorno que informa a los solicitantes de auxilio, sobre la recepción de su mensaje y que la ayuda está en camino. Además, la tecnología Galileo permite reducir el radio de búsqueda reduciendo el tiempo de rescate, lo que es un factor crítico para salvar vidas en estas misiones.

Según la Agencia Europea de Navegación por Satélite (GSA), el mercado de las aplicaciones basadas en sistemas de navegación por satélite crecerá un 11% anual en los próximos años en Europa, llegando a los 165.000 millones de euros en 2020, solo para las actividades directamente relacionadas con el sistema (chips, mapas o servicios), sin tener en cuenta las actividades facilitadas por esta tecnología, como teléfonos móviles con capacidad de Navegación por Satélite (GNSS). Galileo será clave en la introducción de esta tecnología en el mercado, para complementar al sistema GPS (ver IT44).

Galileo en combinación con GPS abrirá una nueva era en la navegación por satélite, mediante el concepto ‘multiconstelación’. Este uso combinado –en los casos del transporte ferroviario, aeronáutico o carretera– será de gran utilidad para la gestión de flotas, la localización exacta y en tiempo real de un vehículo o nave, incluso en lugares remotos o con escasa visibilidad.

La navegación por satélite es también una herramienta esencial para los científicos, astrónomos, geólogos y biólogos que siguen los movimientos de planetas, la Tierra y la fauna. Este tipo de sistemas de posicionamiento y localizacion permiten, por ejemplo, hacer el seguimiento de animales o vigilancia mediante drones. Además, su precisión temporal, de hasta mil millonésimas de segundo, permite realizar todo tipo de mediciones y experimentos científicos con gran exactitud.

1.500 millones para gestionar satélites

En diciembre de 2016, la GSA, responsable de la explotación del sistema Galileo, adjudicó la operación y mantenimiento del sistema Galileo durante los próximos 10 años a la empresa Spaceopal, formada por la empresa italiana Telespazio y la empresa alemana DLR GfR, que ya gestionaban los centros de control Galileo (GCC) en Italia y Alemania, respectivamente. Spaceopal cuenta en su equipo industrial con la participación de un grupo español liderado por Ineco con la contribución de INTA e Isdefe.

El contrato, valorado en 1.500 millones de euros, incluye la operación y mantenimiento del sistema Galileo:

  • Operación de los satélites Galileo desde los dos principales centros de control localizados en Alemania e Italia.
  • Atención e información a los usuarios, así como actividades de evolución de servicios y aplicaciones desde el centro GSC, situado en Madrid, de la red de distribución de datos de Galileo.
  • Logística y mantenimiento del sistema.
  • Gestión de evoluciones menores y apoyo a evoluciones mayores del Sistema.

EN NOMBRE DEL GENIO

60-reportajes-galileo-5 El astrónomo, físico y matemático Galileo Galilei, nacido en Pisa (Italia) en 1564, sin duda apreciaría los avances de un proyecto como el que lleva su nombre. Fue condenado por la Inquisición por defender, entre otras teorías, que el Sol era el centro del sistema solar y la Tierra gira sobre sí misma. Aunque no hay constancia histórica, se le atribuye la famosa frase pronunciada delante del tribunal: Epur si muove. Aunque abjuró oficialmente de sus afirmaciones científicas –gracias a lo que se le conmutó la pena de prisión por arresto domiciliario de por vida– siguió investigando sobre ellas hasta su muerte en 1642, el mismo año del nacimiento de Isaac Newton. En la imagen, Galileo enseñando al dux de Venecia el uso del telescopio. Fresco de Giuseppe Bertini (1825-1898).

GALILEO SE GESTIONARÁ DESDE MADRID

El GSC de Madrid es el centro internacional de soporte y ayuda a los usuarios del Sistema Galileo. Su gestión, operación y mantenimiento correrá a cargo de Ineco con la colaboración de las entidades españolas INTA e Isdefe.

El Centro de Servicios GNSS (GSC), ubicado en las instalaciones del INTA en Torrejón de Ardoz (Madrid), tendrá como principal misión servir de enlace entre el sistema Galileo y sus usuarios, tanto los de uso libre gratuito como para usos comerciales de valor añadido. El centro incluye servicios como:

  • Soporte para atención a usuarios.
  • Portal web del sistema.
  • Biblioteca electrónica para distribución de documentación.
  • Publicación de productos profesionales.
  • Unidad de ingeniería y ‘expertise’ GNSS.
  • Gestión de usuarios del servicio comercial.

La participación de Ineco en este proyecto comenzó en 2010 cuando llevó a cabo un estudio, financiado por Aena bajo la supervisión del Ministerio de Fomento, para definir el alcance del GSC. Participaron, además, empresas clave de la ingeniería espacial española: Indra, GMV, Deimos, Hispasat, INSA y el propio INTA. Desde 2014, la compañía ha estado prestando servicios de ingeniería en el ámbito de la navegación por satélite dentro de diferentes contratos firmados con la Agencia Europea de Navegación por Satélite (GSA).

Anteriormente, la empresa ha liderado diversos proyectos europeos y ha  participado en ensayos y pruebas de vuelos guiados por el sistema europeo de navegación por satélite EGNOS, precursor de Galileo. El sistema EGNOS mejora las prestaciones del GPS (y en el futuro de Galileo) y facilita el guiado de las aeronaves, aumentando la precisión hasta medio metro. Además, permite a las aeronaves realizar aproximaciones y aterrizajes instrumentales a aeropuertos, sin necesidad de infraestructura terrestre adicional, gracias a la provisión de integridad de la señal en el espacio y la posibilidad de guiado vertical de la aeronave.

]]>
https://www.revistaitransporte.es/la-constelacion-galileo-si-muove/feed/ 0